

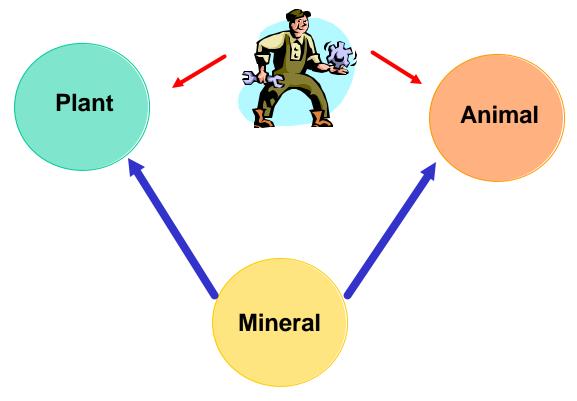
2003 AFCEE Technology Transfer Workshop San Antonio, Texas

Promoting Readiness through Environmental Stewardship

The Determining Role of Abiotic CAH Fate Processes:

Possible Impacts on Your Remedy Plans and Implementation Efforts

Leigh Alvarado Benson Parsons Corporation 26 February 2003



Guiding Questions

- Is microbial degradation the only means of achieving in-situ CAH degradation in a reasonable timeframe?
- What, typically, is overlooked when designing these types of remedies? (Hint: the determining role of abiotic reactions in the fate of CAHs)
- What might that science/design flaw be costing you?
- How can you develop better in-situ CAH remediation strategies that exploit both biotic (rapid) and abiotic (sustainable) elements?

Soil Composition Effects

Primary control on the diversity and metabolism of plants & animals is the nature of carbon and energy sources.

What controls the nature of carbon and energy sources?

(Hint: Both right answers begin with the letter "M")

Soil Microbial Ecology

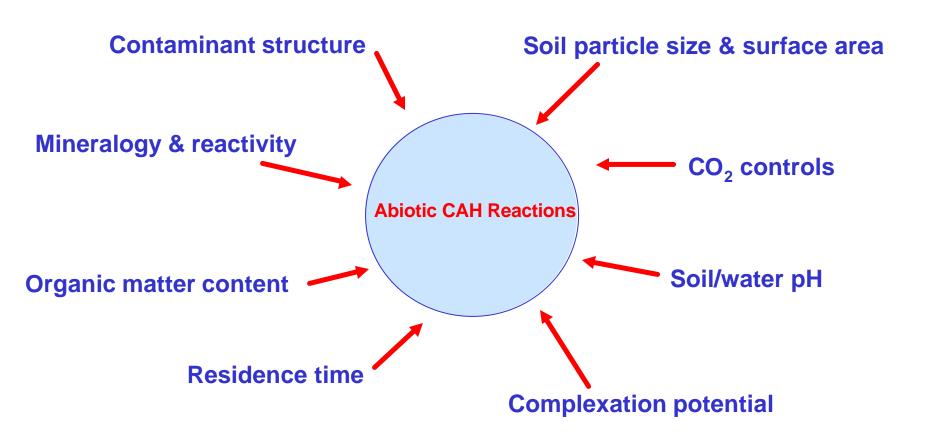
- In-situ CAH treatment potential depends on:
 - Contaminant properties
 - Soil/groundwater geochemistry
 - Microbial community properties
 - Duration of ecosystem exposure (residence time/aging effects)
- Microorganisms accumulate at soil particle surfaces where potential energy sources and nutrients are concentrated
 - Greater availability of energy sources and nutrients at the soil particle surface than in the aqueous phase
 - Successful microbial growth dependent upon forming and sustaining structured surface colonies (biofilms)
 - Microbial communities attached to particle surfaces survive longer, grow faster, and degrade CAHs more quickly than non-attached microbes(i.e., those transported in the aqueous phase)

CAH Fate Controls

- Processes controlling the environmental fate of CAHs
 - Volatilization
 - Leaching and mass transport processes
 - Adsorption/desorption and sequestration within the soil matrix
 - Plant uptake
 - Abiotic transformations
 - Biodegradation
- All processes co-exist and all contribute to long-term CAH concentration, mass, toxicity, mobility, and persistence
- Soils (unsaturated/saturated) = complex, catalytic systems
 - Biotic catalysts (bacteria, fungi, algae, enzymes, viruses, other biota)
 - Abiotic catalysts (organic matter, oxides, hydroxides, clays)
- Biodegradation believed to be the *primary* force in CAH transformation, based on extensive lab work on microbial metabolic activity —> enhanced remediation strategies

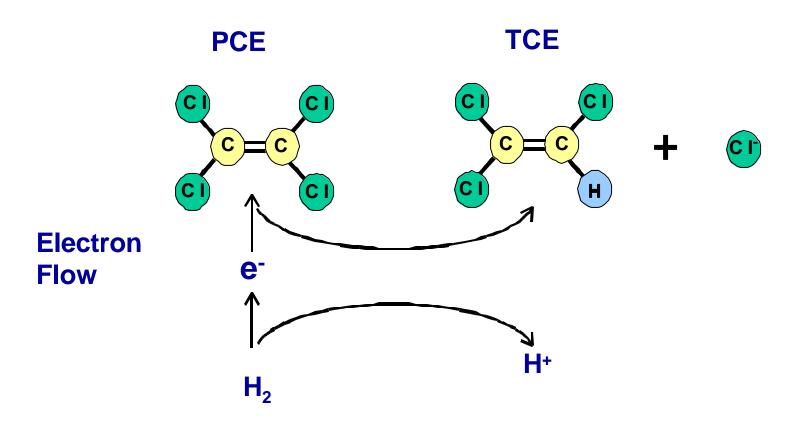
But in the Environment...

- Laboratory conditions (simple) \(\rightarrow \) Natural systems (complex)
- Natural system disrupted by CAH release (reaction catalyst);
 natural reactions occur toward restoring equilibrium
 - Mineral precipitation/dissolution reactions (weathering)
 - Complexation and adsorption
 - Oxidation/reduction reactions
- Biotic catalysts are a subset of these natural reactions
 - Easier to anthropogenically manipulate (enhance by engineering)
 - Kinetically more rapid under right conditions (easier to "see" quickly)
 - Hard to sustain without continued intervention
 - Must account for the "natural order" of the system
- Abiotic catalysts will dominate these natural reactions
 - Will be important at time scale of environmental transport
 - Sustainable (as long as we do not further "muddy the waters")



Substrate Availability

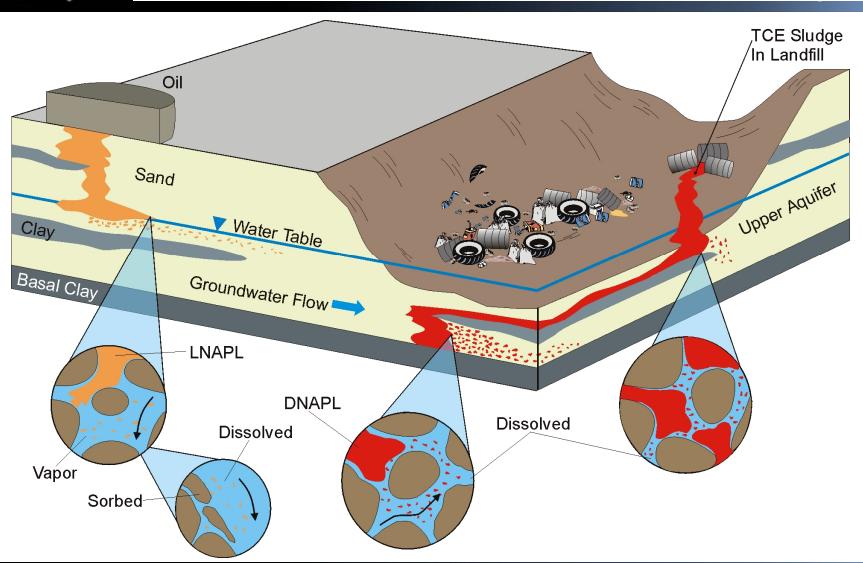
- Sustaining CAH degradation depends on sustaining substrate accessibility
 - Engineered enhanced biodegradation systems depend on sustaining microbial communities and sufficient bioavailable reactants
 - Environmental changes effected by both biotic and abiotic processes may reduce biodegradation potential over time
- Soil particle surfaces:
 - Support effective microbial communities
 - Provide infinite mass of reactants for biotic degradation reactions
 - Abiotically transform CAHs until equilibria are restored


Abiotic Transformations

Abiotic Catalysis of CAHs

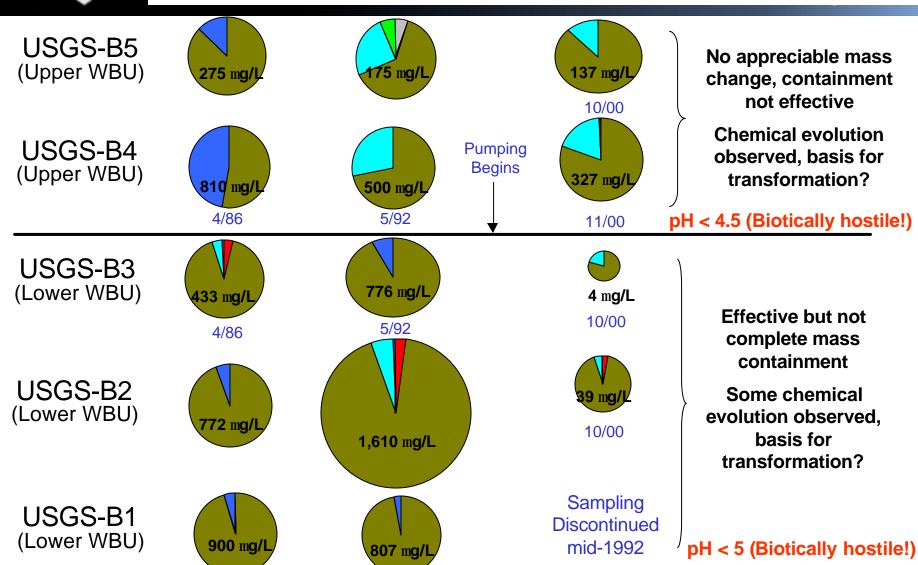
Adsorbs to soil particle surfaces ▶ chemical reaction ▶ release of byproducts

Facilitated soil weathering ▶ chemical reaction ▶ release of byproducts



Mineral Facilitators

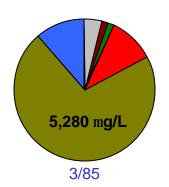
- Inorganic components
 - Kaolinites and bentonites
 - Montmorillonites
 - Clay minerals, especially Fe(III) and Cu(II) smectites
 - Al, Fe, Mn, and Ti oxides
- Abiotic reactions <=> Biotic reactions
 - Probability of bioavailability decreases with age
 - Phasing engineered enhanced biodegradation remedial systems over space and time
- Realized degradation rates/capacity may be controlled by complex mass-transfer and chemical rate kinetics
 - Sequestering vs. soil dissolution
 - Bioavailability vs. inorganic transformation

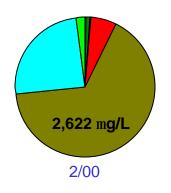


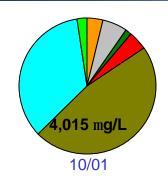
Case Study: DSCR CAH Plume



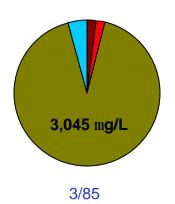
P&T Effect on CAH

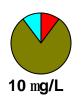





DSCR "Unexpected" Groundwater Quality Data

pH < 4.5 (Biotically hostile!)


Slow conversion from PCE → TCE → DCE → VC


Upper well not significantly affected by pumping (hydraulic constraints), see evidence of "DCE stall"

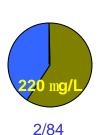
Lower well affected to some degree by pumping

AEHA-28B (Lower)

pH < 5 (Biotically hostile!)

Not Detected

11/00


9/01

DSCR More "Unusual" Data

AEHA-27A (Upper WBU)

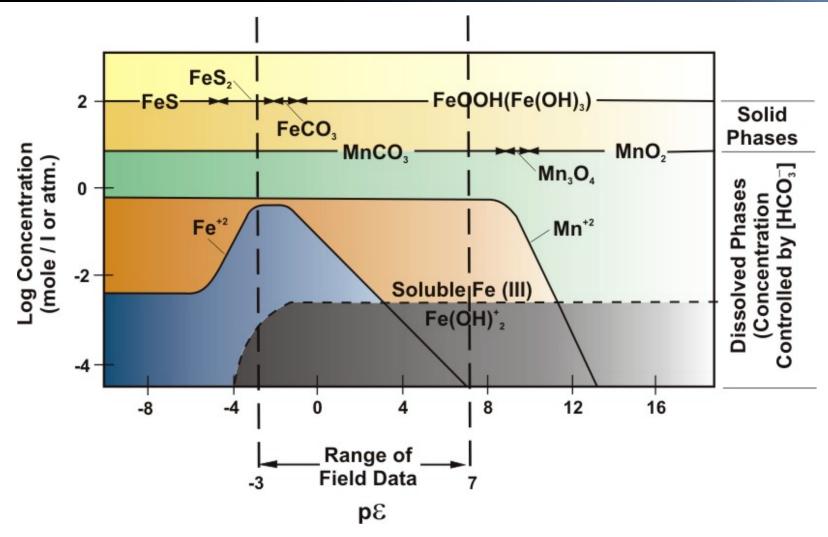
pH < 6 (Biotically unfavorable!)

3/85

10/00

Slow conversion from TCE → DCE → VC

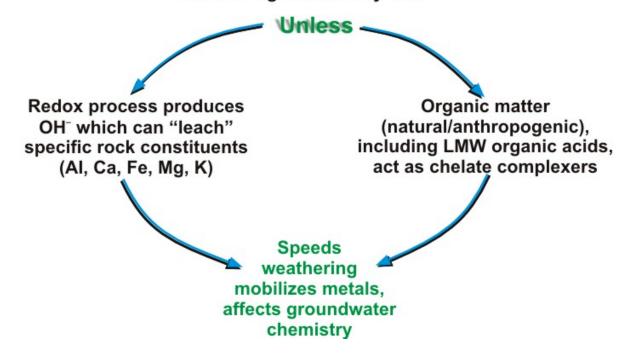
Upper well not significantly affected by pumping (hydraulic constraints), lower well affected to some degree by pumping



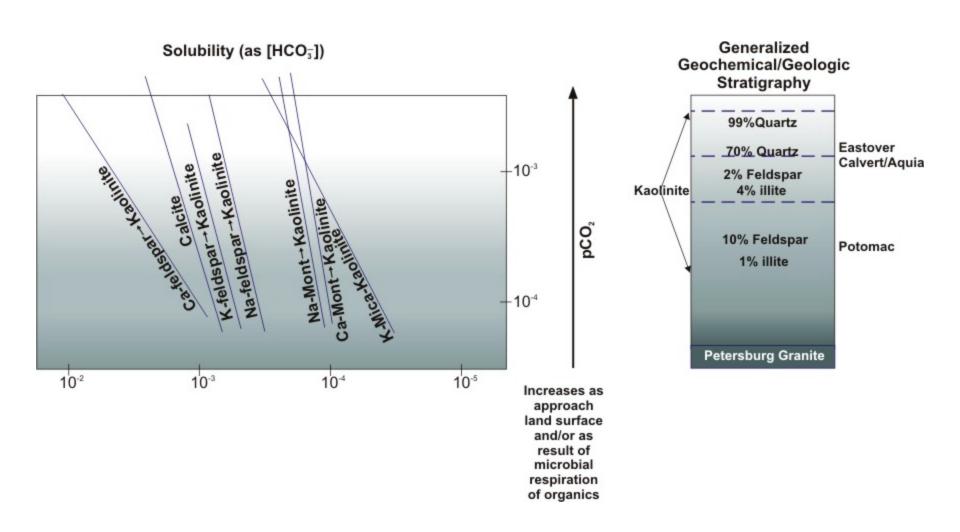
Solving the CSM Puzzle

- P&T system is being adversely affected by some type of biogeochemical fouling
 - On-site "liquid" iron conditions (100s ppm)
 - Other redox-sensitive metals elevated onsite (Al, As, Cu, Mn, Zn) – complexed?
 - Elevated "common" inorganic components (e.g., Ca, Mg, K)
 - Low buffering capacity, low pH
 - Low reported organic content (old landfill)
 - Where are these metals coming from?

Iron at pH Less Than 5



DSCR Weathering Model



- Presence of FeO affects weathering of granite
- Weathering similar to hydrolysis, partial exchange of Si for OH
 - · Weathering rate usually slow

Mineral Weathering at DSCR

Considering Abiotic Processes in Remedy Designs

- Age of CAH release?
- Source of elevated metals?
- Field conditions suitable for biological primacy?
- Mineralogical characteristics consistent with abiotic transformation?
- Intervention potential best applied where and when?
- What are your performance criteria for an engineered enhanced bioremediation remedy when phased in context with natural abiotic transformations?
- Should you intervene at all?

We Know Not What We Do

- Is our intervention compromising other CAH transformation processes, and slowing the natural recovery potential of any site? \$\$\$\$\$\$\$
 - Does adding any energy source change the characteristics of soil surfaces and surrounding water quality that control microbial communities and abjotic transformations?
 - Does enhanced biological activity change soil surfaces (e.g., enzymatic activity) to slow or terminate other CAH transformation processes?
- - Bioavailability decreases with time
 - "Bound" CAHs may be subject to abiotic reactions
- Are we recognizing the potential for and significance of different processes that control CAHs as a function of depth?
 - Biodegradation may be important in near-surface media
 - Abiotic reactions will dominant in deeper, un-weathered strata

So Now What?!

- Is this "bad news" for enhanced bioremediation remedial strategies? No – well, sorta
- Engineered system RD/OMM&M must account for the full range of soil mineral-organic matter-microbial interactions
 - Expedited weathering in source areas may provide required reactants for biotic and abiotic transformations
 - Enhanced engineered systems have a specific application in phased groundwater remediation plans
 - Carefully consider mineralogy and resultant natural water quality controls before enhancing any subset
 - Review available site data to refine remedy performance objectives

Screening for Abiotic Reactions

- Review your site data for evidence of controlling abiotic transformation processes
 - Compatible mineralogy
 - pH, dissolved inorganics, CO₂
 - Common anions and cations
 - Turbidity, TSS
 - Groundwater quality analysis (e.g., geochemical controls evaluation)
 - Background characterization results
- Consider collecting the following "specialized" data as part of remedy planning/design
 - Soil mineralogy by thin-section & XRD
 - Mineral dissolution potential
 - Extractable oxides
 - Soil precipitates and surface area analysis

Answers to Guiding Questions

Is microbial degradation the only means of achieving in-situ CAH degradation in a reasonable timeframe?

No – abiotic degradation may provide long-term control

What, typically, is overlooked when designing these types of remedies?

The importance and significance of soil particle surfaces in controlling CAH degradation potential

- What might that science/design flaw be costing you?
 We cannot fight Mother Nature at any reasonable cost
- How can you develop better in-situ CAH remediation strategies that exploit both biotic (rapid) and abiotic (sustainable) elements?

Phase your response in time and space